Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA]
نویسندگان
چکیده
Heterotrimeric G proteins comprising Ga, Gb, and Gg subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Ga and Gb proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Ga proteins directly interact with the soybean nodulation factor receptors NFR1a and NFR1b, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling.
منابع مشابه
Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean.
Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence ...
متن کاملPhosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in SoybeanOPEN
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Ga, Gb, and Gg subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gb and Gg proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor ...
متن کاملPhosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean.
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor ...
متن کاملHeterotrimeric G protein signaling outside the realm of seven transmembrane domain receptors.
Heterotrimeric G proteins, consisting of the guanine nucleotide-binding Galpha subunits with GTPase activity and the closely associated Gbeta and Ggamma subunits, are important signaling components for receptors with seven transmembrane domains (7TMRs). These receptors, also termed G protein-coupled receptors (GPCRs), act as guanine nucleotide exchange factors upon agonist stimulation. There is...
متن کاملCharacterization of heterotrimeric G-proteins in adult Acanthocheilonema viteae.
Heterotrimeric G-proteins have been found in eukaryotic cells, from yeast to humans, but have received little attention, to date, with respect to parasitic organisms. We now present the first report of the characterization of heterotrimeric G-proteins expressed in a filarial nematode, Acanthocheilonema viteae. Using a combination of (i) affinity labelling with [alpha-32P]GTP; (ii) ADP-ribosylat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013